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Abstract. Biological systems are non-linear, include unobserved vari-
ables and the physical principles that govern their dynamics are partly
unknown. This makes the characterization of their behavior very chal-
lenging. Notably, their activity occurs on multiple interdependent spa-
tial and temporal scales that require linking mechanisms across scales.
To address the challenge of bridging gaps between scales, we leverage
partial dierential equations (PDE) discovery. PDE discovery suggests
meso-scale dynamics characteristics from micro-scale data. In this arti-
cle, we present our framework combining particle-based simulations and
PDE discovery and conduct preliminary experiments to assess equation
discovery in controlled settings. We evaluate ve state-of-the-art PDE
discovery methods on particle-based simulations of calcium diusion in
astrocytes. The performances of the methods are evaluated on both the
form of the discovered equation and the forecasted temporal variations of
calcium concentration. Our results show that several methods accurately
recover the diusion term, highlighting the potential of PDE discovery
for capturing macroscopic dynamics in biological systems from micro-
scopic data.

Keywords: PDE discovery ´ Multiscale modeling ´ Benchmark.

1 Introduction

Biological systems are composed of numerous intertwined spatial and temporal
scales, making their global behavior challenging to describe and understand.
Computational tools such as modeling and simulation are valuable strategies to
address this complexity [11].

These tools allow researchers to encode biological knowledge into models,
which are then simulated to reproduce the behavior of the system of interest and
to conduct computational studies. The resulting synthetic data are then com-
pared to real-world observations, providing useful information and predictions on
the simulated system. Considering that biological objects are high-dimensional
and complex, the eld benets from the recent advances in Articial Intelligence.



2 A. Ducos et al.

This trend is part of a broader movement known as “AI for science”, where ma-
chine learning and data-driven methods are used to accelerate scientic discovery
and modeling.

Here, we study molecular diusion in the cytosol of a cell, which approximates
a signal propagating within the cell. Even though various molecular interactions
are well understood, their behavior at the cell scale often remains mysterious.
The complex interactions between entities may lead to non-linear, unexpected,
emergent behaviors that may be observed at the macro-scale. In addition, at
the microscopic scale, reactions often occur below the diraction limit, which
challenges studying them in live tissue [16]. As a result, models are often tted
and validated with observations conducted at the macro-scale level.

A key challenge in this context is the transition from smaller to larger scales,
in our case from microscopic to macroscopic dynamics. We face a problem
where, while we are able to describe micro-scale mechanisms, assessing the model
against macro-scale observations requires simulating the biological phenomena
at the macro-scale.

Bridging this gap between scales would enable scientic progress, allowing
modeling an entire cell from molecular interactions in cell types whose dynamics
are not fully understood, such as astrocytes [32]. More than just validating our
understanding of the mechanistic processes occurring in a cell, being able to
simulate complex emerging behaviors at the macro-scale will enable to conduct
prospective studies through new simulations. Thus, it opens new possibilities for
understanding complex biological systems in an interpretable and scalable way,
even when detailed mechanistic knowledge is inaccessible.

In this work, we propose to leverage PDE discovery to bridge the scale gap.
Partial Dierential Equations (PDE) have often been used as tools to model
spatially and temporally biological processes. However, implementing such mod-
els requires a deep understanding of the mechanisms and is time-consuming or
impractical for complex systems. This direction aligns with the increasing in-
terest in applying PDE discovery to biological systems, as presented in recent
work [6], which highlights the need for innovation to address challenges such as
non-stationarity or spatial heterogeneity. PDE discovery oers a promising al-
ternative by learning PDEs directly from experimental or, in our case, synthetic
data. Intuitively, it automatizes the discovery of PDEs that t the observational
data by eciently exploring a space of possible modeling of the system dynam-
ics. As most recent machine learning approaches, it requires a lot of data. In our
framework, these data are generated by a mechanistic model at the micro-scale.

In the remainder of the article, we start by introducing standard approaches
to model biological processes and state-of-the-art PDE discovery tools. Then,
Section 3 formalizes the general approach of our framework. A preliminary ver-
sion of this framework has been implemented to tackle the modeling of calcium
ions diusion in astrocytes. This biological context is introduced to motivate
the overall approach and evaluate its potential. A key of its success is the eec-
tiveness of PDE discovery methods to reveal the true PDE. A simplied mech-
anistic model of calcium diusion based on Brownian motion is used to carry
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out a benchmark of dierent PDE discovery methods and dierent conditions.1
Section 4.3 presents the results of this benchmark.

2 Related Works

2.1 Modeling in Biology

Deterministic models, such as Ordinary Dierential Equations (ODE) and Par-
tial Dierential Equations (PDE), are classical approaches that are used to de-
scribe continuous biological phenomena [13]. These models are based on mecha-
nistic assumptions about processes involving diusion, reaction, transport, and
provide a compact representation of the system dynamics. Tools such as CO-
PASI [20] for ODE models, or BioNetGen [18] for rule-based modeling (which
can generate ODEs when applicable), are commonly used to simulate biochemi-
cal reactions. The construction of such models requires detailed knowledge of the
underlying mechanisms and a careful selection of terms and parameters. How-
ever, identifying the laws responsible for the dynamics of interest is not always
straightforward. In addition, deterministic models do not account for random
uctuations or uncertainties [17], which can be important in biological systems.

Particle or voxel-based approaches are commonly used to simulate the spatio-
temporal dynamics of stochastic processes. They simulate the dynamics of in-
dividual entities (molecules, cells, etc.) following mechanistic rules and allow
the analysis of the global behavior of the system. Existing simulators include
Smoldyn [3] and MCell [22] (particle-based) or STEPS [19] (voxel-based). These
models are well-suited to capture spatial heterogeneity and local interactions but
are computationally intensive, especially as the number of entities or the domain
size increases. Extracting a macroscopic description or general laws from such
simulations remains a signicant challenge.

Hybrid models, which couple particle-based simulations with PDE or ODE
frameworks oer a powerful strategy for capturing both microscopic stochasticity
and macroscopic dynamics in cell biology. Smith et al. [30] reviewed spatially-
extended hybrid methods to model multiscale biological and physical systems.

2.2 PDE Discovery

ODE/PDE discovery is an emerging machine learning technique to identify gov-
erning laws from experimental data. This eld has advanced in parallel with
sparse regression, machine learning, and deep learning. These methods have
yielded promising results in various biological contexts, such as sea surface height
dynamics [25] or cell migration and proliferation [10] modeling. This section
briey reviews PDE discovery methods by type and chronology.

1 We propose this biological case study to make the benchmark more tangible. It can
be generalized to the modeling of other diusion-reaction processes.
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PDE discovery is usually presented formally as the problem of discovering a
(non-linear) function F such that:

ut = F (u,ux,uxx, . . . ,u
2
x,u

2
xx, . . . , x), (1)

where ut =
∂u
∂t is the rst-order time derivative of the eld u(t, x), and ux . . .uxx

are the spatial derivatives of u.2

Early PDE discovery methods rely on the assumption that most equations
can be expressed as a sparse linear combination of terms from a predened set
(ux, uxx, etc.), called a library. They make the Ockham’s razor assumption
and avoid more complex PDE. This approach is used in SINDy [7] and PDE-
Find [29], which perform sparse regression to select the relevant terms from this
xed library to get a PDE. However, if the underlying dynamics is driven by a
model that is out of this dictionary, it cannot be discovered. To address this,
more exible methods such as SGA-PDE [9] and DLGA-PDE [33] use genetic
algorithms to generate custom libraries, expanding the search space at the cost
of increased computational cost. Another challenge for sparse regression methods
is the sensitivity to noise, as estimating derivatives from noisy data can degrade
accuracy. To address this, weak formulations integrate PDEs over domains with
test functions. This smooths the derivatives and improves the robustness. Weak
SINDy [26] combines the use of weak formulations with sparse regression to
handle noise.

Despite improvements, symbolic methods often rely on predened structures
and struggle in high-dimensional settings. Deep learning oers more exible al-
ternatives. Convolutional Neural Network (CNN) based models such as PDE-
Net [24,23] aim to simultaneously learn the solution and the underlying PDE
structure. DeepMoD [5] approximates both the target and its derivatives through
automatic dierentiation [4], minimizing the eects of noise during sparse regres-
sion. These models are powerful, but more computationally demanding. Hybrid
methods combine the interpretability of physics-based methods while incorpo-
rating the adaptability of machine learning, leading to more robust and gener-
alizable solutions.

An alternative to dierentiation to simulate a PDE is to use Physics-Informed
Neural Networks (PINNs) [28]. PINNs integrate PDE constraints into the loss
function of neural networks, ensuring that the discovered solutions respect the
underlying physics of the system. R-DLGA [34] constructs a library of candidate
terms using a neural network and a genetic algorithm. Then, a PINN is used
to discover potential terms which are added to the loss function as physical
constraints to further optimize the derivatives and discover the PDE.

In parallel, probabilistic methods that provide predictions while accounting
for uncertainty have emerged. Instead of assuming that there is only one cor-
rect equation that successfully describes the system dynamics, these methods
recognize that various equations might t the data, especially when the data

2 For the sake of simplicity, this article considers only one spatial dimension x but all
the methods can handle more spatial dimensions.
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is noisy, incomplete, or complex [27]. For example, Bayesian Symbolic Learn-
ing (BSL) [31] leverage Bayesian inference to account for uncertainty in noisy
datasets, improving the robustness of discovered equations.

Finally, Reinforcement Learning (RL) has been used to explore complex
and high-dimensional solution spaces. For example, R-DISCOVER [14] applies
physics-constrained reinforcement learning to identify governing equations, while
MORL4PDEs [35] deploys multi-objective RL to balance accuracy, simplicity,
and eciency.

We also make an Ockham’s razor assumption for all of the tested PDE dis-
covery methods in this study assuming that the underlying equation can be
expressed as a linear combination of candidate terms (see section 4.2), as this
formulation allows the use of ecient sparse regression techniques to identify the
governing dynamics.

3 Combining Scales through PDE Discovery

Figure 1 illustrates the overall approach of this study. We propose to simu-
late macro-scale processes from micro-scale mechanistic rules. The micro-scale
process is the evolution of the density of some particles represented by a spatio-
temporal eld u(t, x) ∈ Rd

+, where d represents the dimension of the eld (e.g.
the number of dierent types of particles). The meso-scale corresponds to a
spatio-temporal grid used to simulate a PDE. Because of the assumptions of the
state-of-the art PDE discovery methods, the grid is regular. We also assume that
the boundary conditions of the simulation are known.

The overall process consists of ve main steps:

1. Generate diverse realistic initial conditions. In this rst step, dierent
spatial patches with their local boundary conditions are randomly sampled
in the whole macro-system to simulate (e.g., the whole cell).

2. Simulate mechanistic local behaviors for each patch. Then, a mecha-
nistic particle-based engine locally simulates the microscopic behavior of the
system. This spatio-temporal range of the simulation is set to balance the
computational cost of the simulation and the need for data of PDE-discovery
methods.

3. Mean fields of the local simulation. Along the simulations, the density of
particles at the meso-scale are computed to create a dataset representing the
local behavior of the system. This step creates n local mean elds (ui)i∈[n].
Note that several runs of the same patch can yield dierent eld values due
to the stochasticity of the simulation.

4. PDE discovery. A PDE discovery method is applied to the collection of
spatio-temporal elds that have been simulated to infer the governing equa-
tion, represented by the F function. This process assumes that there is only
one governing equation for the entire macro-system.

5. Simulate the global behavior. The discovered dierential equation is
integrated numerically on the entire spatio-temporal domain to simulate the
macro-scale behavior.
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Fig. 1: Framework of the proposed approach for macro-scale simulations using
PDEs discovered from micro-scale simulated data. Briey, the diusion of cal-
cium ions in sub-cellular compartments referred to as microdomains (1) are sim-
ulated numerically (2). Then, local mean elds of particle density are computed
at the meso-scale (3), on which PDE discovery methods are applied to infer the
equation governing the macro-scale (4).

It is worth noticing that the proposed method is data-free. This model only
requires the knowledge of mechanistic rules to generate as much data as necessary
to robustly discover the governing PDE. Nonetheless, if some observational data
have been collected, they can be integrated in the pipeline as additional mean
elds to the synthetic ones. Thus, the overall process can be seen as a way to
augment the dataset for PDE-discovery.

4 Evaluation of the Framework for Calcium Signaling
Characterisation in Astrocytes

The overall principle presented in the previous section assumes that PDE discov-
ery methods are able to accurately identify the correct equation from generated
data. In our framework, we evaluate the ability of these methods not only to
accurately simulate the process but also to discover an equation that applies to
dierent simulations.

The objective of this use case is to investigate, on a realistic but controlled
dataset, whether the state-of-the-art PDE discovery methods can achieve this
objective of equation discovery accurately. The scenario is said to be realistic
because it is inspired by a biological question, presented in section 4.1. It is
said to be controlled because we implemented a simple mechanistic model whose
mean eld behavior is a known PDE.
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4.1 Application Context

We investigate the use of PDE discovery methods to study calcium signaling in
astrocytes. Astrocytes are the most abundant non-neuronal cells in the central
nervous system, and play a key role in modulating neuronal activity through
calcium signaling [32].

Most calcium signals in astrocytes, notably those associated with neu-
ron–astrocyte communication, occur in microdomains and are spatially
restricted [1]. These signals are dicult to investigate experimentally be-
cause they occur in compartments below the diraction limit, which is why
particle-based models have been developed to study them [12].

Studying whole-cell dynamics is essential to understand how signals interact
and integrate within an astrocyte. This is particularly relevant given that a
single astrocyte can interact with more than 100,000 synapses simultaneously[8],
generating numerous microdomains in the cell.

While particle-based simulations are ideal for capturing sub-diraction cal-
cium dynamics, they are computationally demanding, which makes it impractical
to simulate calcium signaling at the scale of the whole cell.

To bridge this gap, we propose to test whether PDE discovery methods could
be used to simulate calcium dynamics in astrocytes at the whole-cell level. More
precisely, we generated a synthetic dataset using particle-based simulations of
calcium diusion in conned spaces. This simulation is based on a Brownian
motion of particles.

Our aim is to evaluate whether the existing PDE discovery methods can
reconstruct the correct governing equations. We know how to describe several
biological reactions with mechanistic modeling such as diusion processes, which
can be described by Einstein’s relation for Brownian motion [15]. Here, the
expected dierential equation for our system is a classical diusion equation:

ut = Duxx,

where D ∈ R+ is the diusion coecient, and u is a scalar eld representing the
density of a unique particle. D is a constant describing how fast particles can
spread, which depends on the nature of these particles and on the properties of
the system such as the temperature.

4.2 Experimental Protocol

The data used in this work simulates calcium diusion in a one-dimensional
space, capturing the temporal evolution of calcium ions coordinates. This data
is produced using a particle-based simulator, which models calcium ions as indi-
vidual agents diusing in space with a diusion coecient D. Agents are initially
placed at predened locations (called sites), and their movements are tracked
over time. A function is reconstructed at each timestep by discretizing space and
counting the number of particles per slice of space. This generates a spatiotem-
poral eld u(x, t) which is used as an input to the PDE discovery methods.
Figure 2 illustrates representative generated data.
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Fig. 2: Examples of meso-scale calcium diusion data generated with dierent
initial parameter values. Left: 1 site and 2 initial ions, middle: 2 sites and 3
initial ions, right: 10 sites and 50 initial ions.

We emphasize that the objective of these experiments is not to make bio-
logical ndings, but to assess the eectiveness of our framework to recover the
governing dynamics from microscopic data. The coecient of diusion of calcium
is set to D=13 µm2.s−1 to account for calcium buering in cells [2]. Despite our
attempt to make the synthetic data realistic, the goal of this study is not to
yield the richness and complexity of state-of-the-art models of calcium signaling
in astrocytes.

PDE discovery methods are evaluated using the framework presented in g-
ure 3. The simulated data is divided into two subsets along the temporal dimen-
sion: the rst 200 time steps (80%) have been designated for training and the
remaining 50 last (20%) reserved for testing. To understand the conditions un-
der which each method performs optimally, the entire process is repeated across
a wide range of biologically relevant initial conditions.3 Specically, the initial
number of agents and sites ranged respectively from 2 to 100 and from 1 to 100
in steps of 5. Ten simulations were run for each of these initial conditions. This
approach enables the identication of scenarios in which specic methods exhibit
superior performance.

We selected ve dierent methods: PDE-Find [29], SGA-PDE [9], Weak
SINDy [26], DeepMod [5], D-CIPHER [21], which all extract the F function
of the PDE in eq. 1 as a linear combination of derivative terms f in a nite
dictionary D, i.e.:

ut =


f∈D

ξff. (2)

Additionally, we designed a naive method, called Caterpillar, specically for
the prediction task. This method serves as a baseline to discuss the results of
the other approaches. Rather than discovering an equation, Caterpillar simply
propagates the last observed state from the training data for all future time
steps. Consequently, it is included only in the evaluation of the prediction error
(εp).

3 Each set of initial conditions generates a unique eld dataset used for PDE-discovery.
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Fig. 3: Framework to evaluate the performance of a PDE discovery method. 1○
generation of particle-based calcium diusion data, 2○ PDE discovery predicting
an equation, 3○ integration of the discovered equation into a numerical solver,
4○ performance evaluation using dierent metrics: εeq, εp, S, and ρ.

Unfortunately, the collection of derivative terms depends on the method. In
order to make a fair comparison between them, we propose a unied dictionary
D of derivative terms. Let p ∈ Np, and γ ∈ [[0, p]]p which represents a vector of
size p containing natural integers between 0 and p. An element fγ ∈ D is dened
by:

fγ =


i∈[p]

∂iuγi

∂xi
.

For instance, with p = 2, the equation 3.2uux + 2uxx is represented by
coecients ξ[1,1,0] = 3.2 and ξ[0,0,1] = 2, all other coecients being zero. All
benchmarked methods have been set up and adapted to yield equations aligned
with a dictionary D with p = 3. ξγ denotes the tted parameters of a PDE
expressed in this dictionary and ξγ its true parameters.

Rather than limiting the assessment of PDE discovery performance to pre-
diction accuracy (ϵp), we also evaluate the accuracy of the recovered equation
using three metrics (ϵeq, S, ρ):
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– εeq calculates the Mean Squared Error (MSE) between the discovered PDE
and the ground-truth equation. Low MSE values indicate an accurate repre-
sentation of the system dynamics. As we evaluate the capacity of the meth-
ods to discover the diusion equation, the absence of the diusion term is
penalized.

εeq =

∞ if ξ[0,0,1,0] = 0 (no diusion term)
γ(ξγ − ξγ)2 otherwise

– εp calculates the Mean Squared Error (MSE) between the forecasted (from
the discovered PDE) and the ground-truth next states of u.

εp = ||u(tN . . . tM , ·)− û(tN . . . tM , ·)||2,

where u(tN . . . tM , ·) refers to the true numerical values of test data, and
û(tN . . . tM , ·) represents values of predicted data (see Fig. 3).

– S measures the sparsity of the discovered equation.

S =


∞ if ξγ = 0, ∀γ
1− ξγ ξγ=0

ξγ otherwise

S is close to 1 for a more compact and interpretable model, which is desirable
to identify the dynamics of the system.

– ρ is the rank of the diusion term, where terms are listed by descending
order of their coecient value, i.e. from the most important to the least
important. Comparing the ranks of terms in the true equation with that of
the discovered equation provides an insight into the ability of the method to
correctly prioritize the key terms within the equation.

4.3 Benchmark results

In this section, we present the performance of the PDE discovery methods within
our modeling framework.4

Figure 4 illustrates the performance of the PDE discovery methods according
to the dierent metrics for each setting (number of agents from 2 to 100, number
of sites from 1 to 100).

The empty cells in gure 4 correspond to conditions where a PDE discovery
method failed to yield results. These failure cases will be detailed in the following
paragraphs.

Regarding the prediction error εp (Fig. 4a), D-CIPHER and Caterpillar are
overall the most eective methods (lower error). WSINDy shows good perfor-
mance where many sites and agents are present, suggesting its strength in dense

4 Our implementation of the framework, including the generator of synthetic
datasets, is accessible for reproducibility purposes: https://gitlab.inria.fr/
tguyet/pde-benchmark.git.
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(a) log(εp) (b) log(εeq)

(c) S (d) ρ

Fig. 4: Heatmaps of method performance across varying numbers of initial agents
and sites for four evaluation metrics. Each heatmap displays the average value
over experiments with the same initialization of a given metric as a function of
the number of initial agents (rows) and initial sites (columns). The four metrics
are: (a): εp measures the MSE between the ground truth and forecasted next
states of u. Darker blue regions correspond to lower errors and indicate a bet-
ter performance. (b): εeq measures the MSE between the discovered and true
equation. Darker blue regions correspond to lower errors and indicate a better
performance. (c): S indicates the level of sparsity of the discovered equation.
Lighter regions correspond to a sparsity close to 1 and indicate a better perfor-
mance. (d): ρ evaluates the diusion term’s rank. Darker blue regions correspond
to a better prioritization of the key terms within the equation and indicate a
better performance.

environments. Caterpillar, D-CIPHER, and SGA-PDE exhibit similar behav-
iors, mainly extending the trajectories from their initial conditions (i.e., the last
conguration of the training data). It is dicult to draw any conclusions about
PDE-Find and DeepMoD because they show mixed results with variable per-
formance across dierent congurations. D-CIPHER, DeepMoD and SGA-PDE
appear to be the most eective methods for nding the true equation (Fig. 4b).
It is interesting to note that even if DeepMod nds an equation rather close to
the diusion equation, the forecast was not as good as the Caterpillar method.
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(a) Number of excluded experiments (no diusion term)

(b) Number of NaN (numerically unstable discovered
equation)

Fig. 5: Excluded cases and NaN occurrences across experimental settings. (a)
Number of excluded values per conguration, for three methods (PDEFind1D,
SGAPDE, WSindy1D). (b) Number of NaN values for the εp metric in two
methods (PDEFind1D and WSindy1D), corresponding to scenarios where the
solver failed to integrate the discovered equation and to forecast future values of
u. These visualizations highlight which experimental conditions are most subject
to failures or incomplete discovery. Ten simulations were run for each set of initial
conditions.

In contrast, even if WSINDy did not nd the right equation, it yields an ac-
curate prediction (in dense settings). This illustrates the need to evaluate both
the quality of the prediction and the quality of the discovered equations. As the
εeq metric only measures the distance between the ground-truth and the dis-
covered equation, methods that predict small coecients for various terms can
still achieve a low error on the equation (εeq) scores. Therefore, it is essential to
also consider the sparsity metric S. PDE-Find rarely produces sparse equations,
which can explain its good performance in εeq (Fig. 4c). In contrast, Weak SINDy
achieves the best results for sparsity. Notably, D-CIPHER and SGA-PDE never
yield equations with zero coecients. Finally, Weak SINDy and D-CIPHER per-
form better than the other methods on the order coecient metric ρ (Fig. 4d),
while other methods generate comparable results.
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Two dierent failure situations can be observed. In some cases, the equation
does not even contain the diusion term uxx. In this case, the metrics have in-
nite values and the experiment is excluded from the results. Another specic
case is when the equation that is discovered is too complex to be numerically
integrated. Equations with many terms may lead to unstable numerical integra-
tion that yields NaN values during the third step of our framework (Fig 3). In
that case, it is not possible to compute the forecast accuracy metrics εp.

Figure 5 illustrates the settings and the methods in which these situations
have been encountered (methods that were successful in all simulated conditions
are not shown). Figure 5b shows the number of simulations for which the dis-
covered equations were too complex. This issue only arose with PDE-Find and
Weak SINDy. PDE-Find shows a high frequency of solver failures. Figure 5a
shows the counts of excluded experiments. For PDE-Find and Weak SINDy, the
frequency of diusion term inclusion in the discovered PDE appears somewhat
random, indicating unpredictable performance in identifying the correct physics,
while SGA-PDE almost never correctly identies diusion as the simulated dy-
namics. These results show that, even with a simple process, the PDE-discovery
methods may fail to yield the true equations. A possible explanation for this ob-
servation is the small number of data provided to the machine learning methods
in this framework. It is also important to note that most of the methods have
been designed and experimented in a similar setting, using only one run of a
dynamical process to infer the equation. Including several simulation runs to the
pipeline will most likely improve the robustness of the method, but may result
in an increased computational cost.

For now, the computational costs of most of the methods are low. Figure 6
compares the execution time of the considered methods. It reveals signicant
dierences in the eciency of the PDE discovery methods. SGA-PDE is by
far the most time-consuming approach, with high variability. In contrast, Weak
SINDy and DeepMoD exhibit similar and relatively low computation times (a
few seconds), making them ecient choices in terms of runtime. Caterpillar and
PDE-Find are even faster.

5 Conclusion

We propose to study large-scale “emerging” phenomena using PDE discovery
methods on data that is either scarce or impossible to measure experimentally,
but whose microscopic dynamics is known. To support this approach, we in-
troduce a framework that evaluates existing methods in this context. Our case
study on astrocyte calcium diusion reveals that some existing methods can
predict the macroscopic dynamics from particle-based simulations. Among the
evaluated methods, Weak SINDy stands out as a fast and eective approach
with high sparsity and precise recovery of the diusion term. D-CIPHER is also
promising, though it requires further ne-tuning due to its sensitivity to the
choice of candidate terms and test functions. The other methods tested in this
benchmark appear less suited to our biologically-inspired particle-based data.
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Fig. 6: Running time of the benchmarked PDE discovery methods.

These dierences in performance may stem in part from how each method con-
structs or relies on a dictionary of candidate terms: xed and predened for
PDE-FIND and Weak SINDy; user-dened for D-CIPHER; automatically gen-
erated from data for SGA-PDE and DeepMoD. As a result, the true PDE may
not be identiable within some of these dictionaries, which can explain why cer-
tain methods yield good predictions without correctly recovering the equation
sparsity. These rst results need to be conrmed with controlled synthetic data
generated by more complex reactions involving several molecules, in 2D/3D spa-
tial domains, which are more realistic datasets than commonly used in the eld
of PDE discovery. These prospective studies, together with the development of
new tools tailored to the complexity of biological data, pave the way for future
research investigating the physical laws governing cell functions.
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